New search
BI1369

Forest Ecosystem Ecology

The course focuses on the fundamental ecological principles underlying the functioning of forested ecosystems. During this course, students will be equipped with in-depth knowledge of the abiotic and biotic drivers of forest ecosystem processes and ecological communities. Here, we will emphasize the spatial and temporal scales at which these drivers act both above-and belowground. We will address terrestrial as well as aquatic environments and how the linkages between these sub-systems affect forest ecosystem processes. We pay special attention to the effects of global changes on the functioning of future forests and the ecosystem services they will provide. The course is centered on boreal forests, but we will also explore and draw examples from forested ecosystems in other parts of the world. The course consists of lectures, individual and group work, and hands-on exercises. We target students with an interest in pursuing an academic career in ecology, soil science, or forest science. The course also provides science-based knowledge relevant and applicable to conservation, forestry industry, and policy and decision-making authorities. The course is offered as an independent course.

Information from the course leader

Hi all,

Welcome to the Forest Ecosystem Ecology course. The course starts on 1 November 2022 with an introduction in P-O Bäckströms sal at 09:00. So, we look forward to see you all there!

Also, for those of you who did yet self-register for the course, please do so by 1 November. Then, you will also be added to our CANVAS site (which is essential to get access to course information and materials).

Paul Kardol & Maria Myrstener - course leaders

Course evaluation

The course evaluation is now closed

BI1369-20132 - Course evaluation report

Once the evaluation is closed, the course coordinator and student representative have 1 month to draft their comments. The comments will be published in the evaluation report.

Additional course evaluations for BI1369

Academic year 2021/2022

Forest Ecosystem Ecology (BI1369-20021)

2021-11-02 - 2022-01-16

Academic year 2020/2021

Forest Ecosystem Ecology (BI1369-20099)

2020-11-02 - 2021-01-17

Syllabus

BI1369 Forest Ecosystem Ecology, 15.0 Credits

Forest Ecosystem Ecology

Subjects

Biology Forest Science

Education cycle

Master’s level

Modules

Title Credits Code
Single module 15.0 0101

Advanced study in the main field

Second cycle, has only first-cycle course/s as entry requirements(A1N)

Grading scale

5:Pass with Distinction, 4:Pass with Credit, 3:Pass, U:Fail The requirements for attaining different grades are described in the course assessment criteria which are contained in a supplement to the course syllabus. Current information on assessment criteria shall be made available at the start of the course.

Language

English

Prior knowledge

The equivalent of 120 credits at basic level including

- 60 credits in Forest science or

- 60 credits in Forest management or

- 60 credits in Biology or

- 60 credits in Soil science or

- 60 credits in Environmental sciences or

- 60 credits in Natural resource management or

- 60 credits in Natural geography



and,



English 6.

Objectives

The overall aim of this course is to provide understanding of fundamental biotic and abiotic

properties and processes in forest ecosystems. Students will receive in-depth knowledge of factors that control the structure, functioning and dynamics of forests across spatial and temporal scales. Both terrestrial and aquatic environments and linkages and feedbacks between the two sub-systems will be covered. The course will further provide an overview of analytical approaches commonly used to address patterns and processes in forest ecosystems, including analyses of ecological data and experimental designs. This course will also provide useful skills on critical reading and scientific writing.

After successful completion of the course, the students will be able to:

- Synthetize how climatic and other abiotic factors (e.g., hydrology, topography, soil properties) affect forest ecosystem dynamics including elemental cycling, soil and freshwater processes and communities, and vegetation dynamics.

- Describe how carbon, nutrients and other elements cycle in forest ecosystems, and how they link to biotic communities. List several methods for how we obtain data for measuring elements in soils, water, vegetation and air.

- Explain the effects of trophic interactions, competition, and other biotic drivers on forest vegetation and associated ecosystem processes.

- Explain and synthetize the drivers of species diversity and composition in forested landscapes and clarify the role of biodiversity for ecosystem functioning, with focus on boreal forests and waters.

- Explain and discuss how freshwater systems are linked to forested parts of the landscape and describe feedbacks between terrestrial and aquatic environments.

- Explain and discuss how multiple global change factors are affecting forested ecosystems and the services they provide, including carbon cycling, clean water, and biodiversity.

- Critically evaluate and synthesize scientific literature and apply a scientific approach for problem solving by formulating and testing hypotheses.

- Design experiments and sampling strategies to test ecological questions; understand and apply the most commonly used statistical approaches to analyze ecological data; and utilize the R statistical platform.

Content

This course broadly addresses the functioning of forest ecosystems and primarily focuses on the boreal region. We will also cover fundamental principles that are relevant to all forested ecosystems and discuss examples from temperate and tropical regions. The course will cover and draw examples from natural as well as managed forests. However, forest management and silviculture effects on forest ecosystem processes are covered in depth in other courses within the program.

The first part of the course examines the abiotic components of the forested ecosystems, namely, carbon, water and other vital elements (nutrients, minerals, metals). The major elemental and water cycles will be presented and the scientific methods and technical approaches for measuring these cycles will be discussed. The students will work on a number of exercises using real data and global change scenarios to address the human influences in boreal forests landscapes. In the second part of the course, we will focus on how the abiotic components links to biotic communities in soils, on land and in water. The students will learn about what drives the dynamics, species composition and diversity in forested ecosystems. The first two parts of the course are conducted in the form of lectures, readings, and individual and group assignments with emphasis on current ecological issues. The third part of the course covers methods and approaches to study and analyze forest ecosystems and ecological data. This part involves group projects, using greenhouse and laboratory experiments and statistical analysis of data. Hands-on training in scientific writing, literature discussion and oral presentation is also an important part of the course. Seminars and exercises are mandatory.

Formats and requirements for examination

Approved participation in compulsory seminars and exercises, and approved completion of oral and written assignments.
  • If the student fails a test, the examiner may give the student a supplementary assignment, provided this is possible and there is reason to do so.
  • If the student has been granted special educational support because of a disability, the examiner has the right to offer the student an adapted test, or provide an alternative assessment.
  • If changes are made to this course syllabus, or if the course is closed, SLU shall decide on transitional rules for examination of students admitted under this syllabus but who have not yet passed the course.
  • For the examination of a degree project (independent project), the examiner may also allow the student to add supplemental information after the deadline. For more information on this, please refer to the regulations for education at Bachelor's and Master's level.

Other information

  • The right to take part in teaching and/or supervision only applies to the course date to which the student has been admitted and registered on.
  • If there are special reasons, the student may take part in course components that require compulsory attendance at a later date. For more information on this, please refer to the regulations for education at Bachelor's and Master's level.

Additional information

This course is given within the Masters Program in Forest Ecology and Sustainable Management. The course includes a field excursion (non-mandatory) will take place in early autumn as part of the Forest History course (same program).



SLU is environmentally certified according to ISO 14001. A large part of our courses

cover knowledge and skills that contribute positively to the environment. To further

strengthen this, we have specific environmental goals for the education. Students are

welcome to suggest actions regarding the course’s content and implementation that lead

to improvements for the environment. For more information, see webpage www.slu.se.

Responsible department

Department of Forest ecology and Management

Further information

Determined by: Programnämnden för utbildning inom skog (PN - S)
Biology field: Ekologi
Replaces: SG0180.1 , SG0174.2, SG1333.2

Grading criteria

There are no Grading criteria posted for this course

Litterature list

Literature list_Forest Ecosystem Ecology (BI1369) 2022-2023

**Course book: **

Principles of Terrestrial Ecosystem Ecology (2011). Chapin F.S. III, P.A. Matson, and P.M. Vitousek. Springer Science + Business Media, LLC, New York.

Modules – reading list:

Introduction to forest ecosystem ecology

• Course book chapter 1

Carbon

• Course book: chapters 5-7

• Additional papers:

Koch et al 2004 The limits of tree height, Nature, 428:851-854.

Bonan, G. B., 2008 Forests and climate change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science 320:1444-1449.

Wei et al., 2014 3-PG simulations of young ponderosa pine plantations under varied management intensity: Why do they grow so differently? Forest Ecology and Management, 313:69-81.

Janssens et al., 2001, 7, 269-278 Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biology, 7:269-278.

Berg, B., 2018, Decomposing litter; limit values; humus accumulation, locally and regionally, Applied Soil Ecology, pp 494-508

Water

• Course book chapters 4, 5 (p.129-133), 7 (p. 217-223), 9 (p. 263-266)

• Additional papers:

Ellison D. et al. 2017. Trees, forests and water: Cool insights for a hot world. Global Environmental Change 43: 51-61

Evaristo J. et al. 2015. Global separation of plant transpiration from groundwater and streamflow. Nature 525: 91-94

Allen G.H. and Pavelsky T. M. 2018. Global extent of rivers and streams. Science 361: 585-588.

Hoset et al. 2019. Enhancement of primary production during drought in a temperate

watershed is greater in larger rivers than headwater streams. Limnol. Oceanogr. 64

Cycling of nutrients, hydrogen ions and element biogeochemistry

• Course book chapter 9 (197-220)

• Additional papers:

Van Breemen et al., 1983. Acidification and alkalinization of soils. Plant and soil 75:283-308.

A.J.B. Zehnder and B.H. Svensson, 1986, Life without oxygen: what can and what cannot? Experimentia 42: 1197-1205

Microbes, soil fauna, and soil food webs

• Course book chapters: 7, 8, 9

• Additional papers:

Crowther et al. (2019). The global soil community and its influence on biogeochemistry. Science 365, DOI: 10.1126/science.aav0550

Bennett et al (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355: 181-184.

Thakur & Geisen (2019). Trophic Regulations of the Soil Microbiome. Trends in Microbiology 27: 771-780.

Potapov (2021). Multifunctionality of belowground food webs: 1 resource, size and spatial energy channels. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.447267.

The role of biodiversity in ecosystem functioning

• Course book chapters: 8, 10, 11, 13

• Additional papers:

Richardson, J. S., & Sato, T. (2015). Resource subsidy flows across freshwater-terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology, 415(April 2014), 406–415. https://doi.org/10.1002/eco.1488

Wardle et al. (2004). Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.

Boonstra et al. 2016. Why do the boreal forest ecosystems of northwestern Europe differ from those of Western North America? Bioscience 66: 722-734.

Hooper et al. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological monographs 75: 3-35.

***Global perspectives of forest ecosystems ***

• Course book chapters 14

• Additional papers:

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., et al. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4.

Nilsson, C., Polvi, L. E., Gardeström, J., Hasselquist, E. M., Lind, L., & Sarneel, J. M. (2015). Riparian and in-stream restoration of boreal streams and rivers: success or failure? Ecohydrology, 8, 753–764. https://doi.org/10.1002/eco.1480

Gauthier et al. (2015). Boreal forest health and global change. 349: 819-822.

Ceccherini et al. (2020). Abrupt increase in harvested forest area over Europe after 2015. Nature 583, pages72–77. https://doi.org/10.1038/s41586-020-2438-y

Course facts

The course is offered as an independent course: Yes Tuition fee: Tuition fee only for non-EU/EEA/Switzerland citizens: 38054 SEK Cycle: Master’s level
Subject: Biology Forest Science
Course code: BI1369 Application code: SLU-20132 Location: Umeå Distance course: No Language: English Responsible department: Department of Forest ecology and Management Pace: 100%